March 2014

Candida $\&$ the anti-fungals; an ICU perspective

Dr Duncan Wyncoll, Guy's \& St Thomas’ NHS Foundation Trust, London, UK

Conflicts of Interest
In the last 5 years I have acted as consultant, or received honoraria/research grants from:

Astellas, AstraZeneca, Bard, Bioproducts, Biovo, ConvaTec, Covidien, Eli Lilly, GSK, Iskus Health, J\&J, Kimberly-Clark, Portex, Pfizer, Sage \& Venner

Candida is the predominant fungal pathogen in the ICU setting: EPIC II

Global Surveillance Study

- 13,796 adults in 1,265 ICUs in 75 countries
- Candida responsible for 88% of 963 fungal infections
- 89% in Europe ($\mathrm{n}=633$) \& 85% elsewhere ($\mathrm{n}=330$)

Candida \square Aspergillus \square Others

Candida blood stream infections in the ICU

Global Surveillance Study: EPIC II

- 99 patients with Candidaemia
- Prevalence of 6.9/1,000 ICU patients
- 70\% Candida Albicans
- Mortality of 43% (vs. 25% for gram +ve, \& 29% gram -ve BSI)
- Fluconazole was the most frequent therapy given (in 2007)

Healthcare-associated BSI: A distinct entity?

Multivariate logistic regression analysis of 6,697 patients
\square Odds Ratio for Mortality

Shorr A et al, Crit Care Med 2006;34:2588-95

Question 1: In patients who have a Candidaemia BSI, when does it typically occur in relation to 'time from admission'?

1. Early (within the first 7 days of ICU admission)
2. Late (after 14 days or more)
3. Somewhere in the middle (7-14 days)
4. No different to other Blood Stream Infections
5. I don't know...

Candida blood stream infections in the ICU: EPIC II

Kett D, et al. Crit Care Med 2011;39:665-70

Question 2: In my ICU, Fungal infections are...

1. Decreasing in frequency
2. Staying about the same
3. Increasing in frequency
4. To be honest, I don't know...

Candida as a proportion of other infections...

St Thomas' Hospital Data: 30-bed ICU over 8 years (Unpublished)

Candida species in epidemiological surveys

Author	Period of observation	Study	Region	No. of strains	Candida albicans	Candida tropicalis	Candida parapsilosi	Candida glabrata	Candida krusei
Pfaller et al. [10]	2008-2009	SENTRY	Worldwide	2'085	48\%	11\%	17\%	18\%	2\%
			Europe	750	55\%	7\%	14\%	16\%	3\%
			North America	936	43\%	11\%	17\%	24\%	2\%
			Latin America	348	44\%	17\%	26\%	5\%	1\%
			Asia	51	57\%	12\%	14\%	14\%	2\%
Marra et al. [11]	2007-2010	SCOPE	Brazil	137	34\%	15\%	24\%	10\%	2\%
Arendrup et al. [9]	2004-2007		Denmark	2901	57\%	5\%	4\%	21\%	4\%
Horn et al. [12]	2004-2008	PATH	North America	2019	46\%	8\%	16\%	26\%	3\%
Leroy et al. [7]	2005-2006	AmarCand	France ICU	305	57\%	5\%	8\%	17\%	5\%
Talarmin et al. [13]	2004		France West	193	55\%	5\%	13\%	19\%	4\%
Bougnoux et al. [14]	2001-2002		Paris ICU	57	54\%	9\%	14\%	17\%	4\%
Marchetti et al. [2]	1991-2000	FUNGINOS	Switzerland	1137	64\%	9\%	1\%	15\%	2\%
Sandven et al. [15]	1991-2003		Norway Nationwide	1393	70\%	7\%	6\%	13\%	1\%
Pfaller et al. [16]	1997-2005	ARTEMIS	Mondial **	55'229	71\%	5\%	5\%	10\%	2\%
Tortorano et al. [8]	1997-1999	ECMM	Europe	2089	52%	7\%	13\%	13\%	2\%

Risk factors for Invasive Candidiasis

- Colonisation of several body sites
- Broad-spectrum antibiotics
- Neutropaenia
- Burns (>50\%)
- Major abdominal surgery
- Surgery of the urinary tract in the presence of candiduria
- Parenteral nutrition
- AKI
- APACHE >20
- CVC in place
- Diabetes
- Prolonged ICU stay

Potentially modifiable risk factors in yellow

Risk factors for Invasive Disease

Overgrowth

Approaches to antifungal therapy

Assessing the risk of Invasive Candidiasis

At-risk patients

Predictive rules
- $\geq 4^{\text {th }}$ day of ICU
- Sepsis + CVC +
MV +1 of:
- TPN or AKI or
Major Surgery or
Steroids

Candida Score
- Surgery @ ICU adm
- TPN
- Severe sepsis
- Candida colonisation
- >2.5 points

Colonisation Index

- Number of sites/number screened
- $2 x$ weekly
- >0.5 or ≥ 0.4 corrected

Start empirical antifungal treatment

Patients Tx: 10-15\% Candidiasis captured: 60-75\%

Patients Tx: 15-20\% Candidiasis
captured: 75-80\%

Patients Tx: 10-15\%
Candidiasis
captured: 85-90\%

Prediction of invasive candidal infection in critically ill patients with severe acute pancreatitis

Alison M Hall ${ }^{1}$, Lee AL Poole ${ }^{1}$, Bryan Renton ${ }^{2}$, Alexa Wozniak ${ }^{1}$, Michael Fisher ${ }^{3}$, Timothy Neal ${ }^{3}$, Christopher M Halloran ${ }^{4}$, Trevor Cox ${ }^{5}$ and Peter A Hampshire ${ }^{1 *}$

No. of Candida species isolated

Species in infected patients

Comparison of the various scoring systems

	Modified Invasive Candidiasis Score	Candida Score	Candida Colonisation Index
Sensitivity $(95 \% \mathrm{CI})$	0.61	0.23	0.67
Specificity	$0.36-0.83)$	$(0.1-0.42)$	$(0.41-87)$
$(95 \% \mathrm{CI})$	$(0.38-0.61)$	$(0.74-0.92)$	0.79
AUC ROC	0.59	$0.62-0.88)$	
$(95 \% \mathrm{CI})$	$(0.49-0.69)$	$(0.52-0.71)$	0.79

Biomarkers vs. Risk Scores

Figure 3 ROC AUC curves of BG, CS, and colonization index for proven IC cases. [The AUC of BG was significantly higher than those of CS ($P<0.001$) and colonization index ($P<0.001$), please edit this sentence as a footnote].

Biomarkers vs. Risk Scores

	Assessment	No Candida colonisation $(\mathrm{n}=61)$	Candida colonisation $(\mathrm{n}=84)$	Invasive Candidiasis $(\mathrm{n}=31)$	P value
Candida score	Max.	2	3	4	0.001
	1 st	2	4	5	0.001
$1 \rightarrow 3-\beta-\mathrm{D}-$	Max.	9	45	54	0.11
glucan (pg/ml)	1 st	52	66	268	0.003
C-reactive	Max.	201	207	172	0.91
Protein (mg/L)	1 st	248	241	283	0.41
Procalcitonin	Max.	0.89	0.58	1.11	0.59
(ng/ml)	1 st	1.25	0.59	3.33	0.18

All median values

Treatment related risk factors for Mortality

All Hospital

$$
\text { Lived }(\mathrm{n}=173) \quad \text { Expired }(\mathrm{n}=72)
$$

Mechanical ventilation, n (\%)
MV days prior to + culture a
Prior antibiotics, n (\%)
151 (87.3)
61 (84.7)
Prior antifungal, n (\%)
26 (15.0)
14 (19.4)
Central vein catheter, n (\%)
155 (89.6)
62 (86.1)
TPN, n (\%)
38 (22.0)
10 (13.9)
Foley catheter, n (\%) 97 (56.1)

46 (63.9)
Surgical drain, n (\%)
39 (22.5)
10 (13.9)
Corticosteroids, n (\%)
42 (24.3)
26 (36.1)
Vasopressor, ${ }^{b}$ (\%)
14 (8.1)
26 (36.1)
CVC removed, n (\%)
140 (90.3)
36 (58.1)
Treatment within 24 hrs , n (\%)
25 (14.5)
12 (16.7)
Treatment within 48 hrs , n (\%)
111 (64.2)
34 (47.2)
Inadequate initial fluconazole dosing, n (\%)
21 (12.1)
20 (27.8)

Treatment related risk factors for Mortality

Number of treatment related risk factors

- Retention of CVC
- Inadequate initial fluconazole dosing
- Therapy delayed beyond 48 hours

Treatment related risk factors for Mortality: inappropriate antimicrobial therapy

inappropriate
appropriate

Kumar A, et al. Chest 2009;136:1237-48

Question 4: Which statement is most accurate about my institution?

1. We struggle to get 50% of patients with septic shock to receive antimicrobials within 1 hour
2. We are better than 50% but still less than 75%
3. I think/know we are better than 75%
4. We're not too bad with antibacterials, but there can be significant delays with Antifungals for patients with Candidaemia

Medscape General Surgery

Need a way to stay informed

 on-the-go?Access information from industry from your mobile device

CDC Releases
Foodborne Illness
Report Card

New ASCCP
Guidelines: Equal
Management for Equal
Risk

Medscape Medical News
Candida: New Rapid Blood Test Could Cut Mortality
Ricki Lewis, PhD
Apr 25, 2013

Editors' Recommendations

Empiric Antifungal Therapy for Candidiasis in Preemies

American Thoracic Society Issues Guidelines on Treating Pulmonary Fungal Infections

A new, rapid test for Candida infections of the bloodstream may cut mortality from 40% to 11%, according to a report published in the April 24 issue of Science Translational Medicine.

Lori A. Neely, PhD, from T2 Biosystems in Lexington, Massachusetts, and colleagues teamed polymerase chain reaction (PCR) and nanotechnology with T2 magnetic resonance (T2MR) technolocy to create an assav that

Delay in initiation of antifungal therapy

\square \% Hospital Mortality

Kollef M, et al. Clin Inf Dis 2012;54:1739-46

Delay in initiation of antifungal therapy

Table 2. Infection and Treatment-Related Characteristics

	Lived	Died	
	$(n=69)$	$(n=155)$	P value

Infection source, n (\%)

Vascular catheter-associated	$37(53.6)$	$86(55.5)$.796
Respiratory	$11(15.9)$	$24(15.5)$.931
Urinary	$11(15.9)$	$21(13.5)$.636
Gastrointestinal	$8(11.6)$	$19(12.3)$.888
Central nervous system	$1(1.4)$	$0(0.0)$.308
or skin structure	$7(10.1)$	$14(9.0)$.792
Surgical site	$0(0.0)$	$2(1.3)$	1.000
Cardiac	$0(0.0)$	$0(0.0)$	1.000
Other	$1(1.4)$	$5(3.2)$.669
Candida species, $\mathrm{n}(\%)^{\mathrm{a}}$			
C. albicans	$34(49.3)$	$86(55.5)$.390
C. glabrata	$21(30.4)$	$34(21.9)$.172
C. parapsilosis	$10(14.5)$	$18(11.6)$.547
C. tropicalis	$4(5.8)$	$10(6.5)$	1.000
C. krusei	$1(1.4)$	$5(3.2)$.669
Other species	$2(2.9)$	$3(1.9)$.645

Kollef M, et al. Clin Inf Dis 2012;54:1739-46

Delay in initiation of antifungal therapy

	Lived $(\mathrm{n}=69)$	Died $(\mathrm{n}=155)$	P value
Prior antibiotics, n (\%):	45 (65.2)	112 (72.3)	. 288
Initial antifungal agent, n (\%)			
Echinocandin	53 (76.8)	76 (49.0)	<. 001
Fluconazole/voriconazole	13 (18.8)	25 (16.1)	\ldots
Amphotericin	3 (4.3)	13 (8.4)	\ldots
None	0 (0.0)	41 (26.5)	
Treatment within $12 \mathrm{~h}, \mathrm{n}(\%)^{\text {b }}$	31 (44.9)	65 (41.9)	. 676
Treatment within $24 \mathrm{~h}, \mathrm{n}(\%)^{\text {b }}$	68 (98.6)	112 (72.3)	<. 001
Drotrecogin alfa (activated), n (\%)	1 (1.4)	1 (0.6)	. 522
Corticosteroids, n (\%):	12 (17.4)	42 (27.1)	. 117
GCSF, n (\%)	2 (2.9)	19 (12.3)	. 026
Source control required, (n (\%) ${ }^{\text {c }}$	49 (71.0)	97 (62.6)	. 221
Inadequate source control, $\mathrm{n}(\%)^{\text {d }}$	1 (1.4)	61 (39.4)	<. 001
Mechanical ventilation, n (\%)	34 (49.3)	143 (92.3)	<. 001
Red blood cell transfusion, n (\%)	28 (40.6)	123 (79.4)	<. 001
Total crystalloid solution (L) ${ }^{\text {b }}$	4.3 ± 1.3	4.9 ± 1.5	. 010

Kollef M, et al. Clin Inf Dis 2012;54:1739-46

The cost of delayed therapy

Hospital resource utilization \mathbb{E} cost of treatment of candidaemia

- 167 Adults with Candidaemia
- Culture confirmed BSI with Candida within 14 days of admission
- Appropriate = according to IDSA Guideline \& 'in-vitro sens'
- Post-culture stay was shorter with appropriate therapy
(mean 7 vs. 10 days $p=0.037$)
- Costs were also lower: $\sim \$ 16,000$ vs. $\sim \$ 33,000$ ($p<0.001$)

Question 5: The dose of fluconazole I would use in a patient with septic shock \& receiving $R R T$ ($\sim 25 \mathrm{mls} / \mathrm{kg} / \mathrm{hour}$ CVVHF/DF) is...

1. 200 mg IV OD
2. 400 mg IV OD
3. 400 mg IV BD (or 800 mg OD)
4. $\sim 12 / \mathrm{mg} / \mathrm{kg}$ load $\&$ then $\sim 6 \mathrm{mg} / \mathrm{kg}$
5. Something else

Question 5: The dose of fluconazole I would use in a patient with septic shock $\mathbb{\&}$ receiving RRT ($\sim 25 \mathrm{mls} / \mathrm{kg} /$ hour CVVHF/DF) is...

1. 200mg IV OD

2. 400 mg IV OD
3. 400 mg IV BD (or 800 mg OD)
4. $\sim 12 / \mathrm{mg} / \mathrm{kg}$ load \& then $\sim 6 \mathrm{mg} / \mathrm{kg}$
5. Something else

Fluconazole dosing with RRT

- Variable doses of fluconazole in 4 CVVHDF treated patients
- MIC for fluconazole is considered $6 \mu \mathrm{~mol} / \mathrm{ml}$
- 'Estimated correct dose could be as high as 500-600mg 12 hourly...'

Fluconazole dosing with RRT

- 9 CVVHF treated patients
- Fluconazole 800 mg IV od
- CVVHF at 1L or 2L/hour
(1/3rd predilution)

Bergner R, et al. NDT 2006;21:1019-23

Anidulafungin versus Fluconazole for Invasive Candidiasis

Annette C. Reboli, M.D., Coleman Rotstein, M.D., Peter G. Pappas, M.D., Stanley W. Chapman, M.D., Daniel H. Kett, M.D., Deepali Kumar, M.D., Robert Betts, M.D., Michele Wible, M.S., Beth P. Goldstein, Ph.D., Jennifer Schranz, M.D., David S. Krause, M.D., and Thomas J. Walsh, M.D., for the Anidulafungin Study Group

Response according to different species

Table 3. Microbiologic and Global Responses at the End of Intravenous Therapy in the Modified Intention-to-Treat Population.:

Candida Pathogen	Successful Microbiologic Response			Successful Global Response \dagger		
	Anidulafungin Group no. of isolates	Fluconazole Group otal no. (\%)	P Value	Anidulafungin Group no. of patien	Fluconazole Group otal no. (\%)	P Value
Candida albicans	77/81 (95)	57/70 (81)	0.01	60/74 (81)	38/61 (62)	0.02
C. glabrata	15/20 (75)	18/30 (60)	0.37	9/16 (56)	11/22 (50)	0.75
C. parapsilosis	9/13 (69)	14/16 (88)	0.36	7/11 (64)	10/12 (83)	0.37
C. tropicalis	13/15 (87)	7/11 (64)	0.35	13/14 (93)	4/8 (50)	0.04
Other candida species	5/6 (83)	3/3 (100)	1.00	3/4 (75)	2/3 (67)	1.00
All candida species	119/135 (88)	99/130 (76)	0.02	92/119 (77)	65/106 (61)	0.01

RESEARCH

Anidulafungin compared with fluconazole in severely ill patients with candidemia and other forms of invasive candidiasis: Support for the 2009 IDSA treatment guidelines for candidiasis

Daniel H Kett ${ }^{1 *}$, Andrew F Shorr ${ }^{2}$, Annette C Reboli ${ }^{3}$, Arlene L Reisman ${ }^{4}$, Pinaki Biswas ${ }^{5}$ and Haran T Schlamm ${ }^{4}$

- Re-analysis of the Reboli (NEJM paper)
- Focus on patients who were critically ill
- 163/245 (66.5\%) - severe sepsis or APACHE >15

Figure 1 Difference in global response at end of treatment among severely ill patients and the various subpopulations.

Time to negative blood cultures: Static vs. Cidal

No. at risk:

Days	0	2	4	6	8	10	12	14
Anidulafungin	25	20	8	5	2	1	1	1
Fluconazole	24	21	15	10	5	5	3	1

Reboli AC, et al. BMC Infectious Diseases 2011;11:261

2012 ESCMID Recommendations on fever- \& diagnosisdriven therapy of candidaemia \mathscr{A} invasive candidiasis

Population \& Intention	Intervention	 QoE
ICU patients with fever despite ABXs \& APACHE $>16 ;$ to resolve fever	Flucon 800 mg od	D-1
ICU patients with persistent fever but with no micro evidence; to reduce mortality	Fluconazole or echinocandin	C-2
ICU patients with Candida from respiratory secretions	Any antifungal	D-2
Any patient with Candida isolated from a blood culture	Antifungal treatment	A-2

A-D: Strength of the Recommendation
1-3: Quality of the Evidence

2012 ESCMID Guidelines for Candida diseases in non-neutropaenic adults

Confirmed infection: Candida from blood culture

Strongly recommended: Echinocandins (A-1)

- Anidulafungin
- Micafungin
- Caspofungin

Moderately recommended: Liposomal ampho (B-1)

Voriconazole (B-1)
Marginally recommended: Fluconazole (C-1) Ampho B (C-2)

A-D: Strength of the Recommendation
1-3: Quality of the Evidence
Cornely O, et al. Clin Microbiol Infect 2012;18:19-37

2012 ESCMID Recommendations on antifungal prophylaxis in ICU patients

Population \& Intention	Intervention	 QoE	Note
Recent Abdo surgery AND with perforation; to prevent intra-abdominal candida infection	Flucon 400mg od	$\mathrm{B}-1$	$\mathrm{n}=43$
	Caspo 70/50mg od	$\mathrm{C}-2$	$\mathrm{n}=19$
ICU Surgical patients with LOS >3 days; to prevent invasive candidiasis/candidaemia	Flucon 400mg od	$\mathrm{C}-1$	$\mathrm{n}=260$
	Flucon 100mg od	$\mathrm{C}-1$	$\mathrm{n}=204$
Ventilated, LOS >3 days, CVC +/ - TPN or RRT or pancreatitis or steroids; to prevent invasive candidiasis/candidaemia	Caspo 50mg od	$\mathrm{C}-2$	$\mathrm{n}=186$
Surgical ICU patients	Ketocon 200mg od	$\mathrm{D}-1$	$\mathrm{n}=57$
ICU patients with risk factors; to prevent invasive candidiasis/candidaemia	Itracon 400mg od	$\mathrm{D}-1$	$\mathrm{n}=147$

Cornely O, et al. Clin Microbiol Infect 2012;18:19-37

The Echinocandin trials

Anidulafungin vs. fluconazole

Caspofungin vs. amphotericin B^{*}

Micafungin 150 mg vs. caspofungin
Micafungin 100 mg vs. caspofungin

Micafungin vs. liposomal amphotericin B

The Echinocandins

	Anidulafungin	Caspofungin	Micafungin
Number of papers	>50	>140	>60
Clinical experience	++	+++	++
Interactions	+++	++	+++
Biofilm activity	+++	+++	+++
In vitro activity	+++	+++	+++
Neutropaenic data	ND	+++	+++
Dose in RRT	No change	No change	No change
Disseminated candidiasis	+	+	ND
Dose in liver disease	No change	Reduce	No change
Price (£/\$)	Anidula < Mica < Caspo		
ND = No data	Based on PubMed search, data sheets \& BNF		

Question 6: A patient with a tunneled Hickman line develops a candidaemia, \& has severe sepsis thought secondary to the line. What is the correct line management?

1. It depends whether the Candida species is a biofilm producer
2. The line should always be removed; recovery cannot occur if the line is left in place
3. The line only needs to be removed if the patient deteriorates $\&$ develops shock
4. The line does not need to be removed if the patient is treated with an Echinocandin

Candidaemia outcomes: biofilm vs. non-biofilm producers

Figure 1. Survival among patients with Candida bloodstream infection (CBSI) at $\mathbf{3 0}$ days. Patients were grouped according to the biofilmforming (BF) or non-biofilm-forming (NBF) Candida isolate (for all CBSIs), and according to receiving of highly active anti-biofilm (HAAB) or non-HAAB antifungal therapy (for BF CBSIs only). P-values for statistically significant differences between the groups are shown. doi:10.1371/journal.pone.0033705.g001

Conclusions

- Mortality from Candida infections in the critically
ill remains high
- Outcome is likely to be significantly improved with:
- Earlier recognition with scoring systems $\&$ biomarkers
- Earlier antifungal therapy \&t source control
- More appropriate dosing
- Earlier use of Echinocandins in the more severe patients

