

Anaemia in Critical Care

Tim Walsh

Professor of Critical Care, Edinburgh University

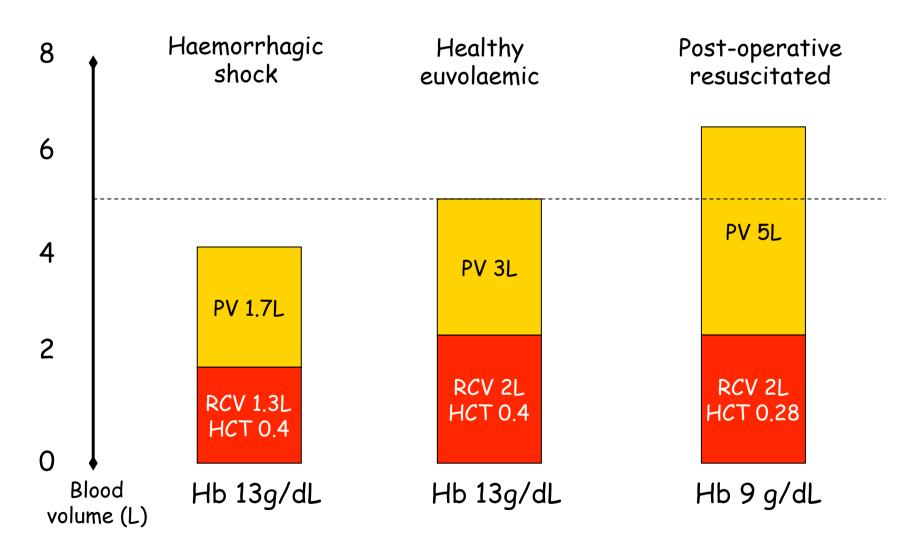
World Health Organisation grading of the severity of anaemia

Grade of anaemia	Haemoglobin range (g.dL ⁻¹)				
0 (none)	>11				
1 (mild)	9.5-10.9				
2 (moderate)	8.0-9.4				
3 (severe)	6.5-7.9				
4 (life threatening)	<6.5				

Questions answered?

- Why are so many critically ill patients anaemic?
- Should I give all patients iron?
- Should I use erythropoietin?
- What is my "default" haemoglobin transfusion trigger?
- What should I do in sepsis?
- What should I do for patients with cardiovascular disease?
- Should I ask for "fresh" blood?

Questions answered?


- Why are so many critically ill patients anaemic?
- Should I give all patients iron?
- Should I use erythropoietin?
- What is my "default" haemoglobin transfusion trigger?
- What should I do in sepsis?
- What should I do for patients with cardiovascular disease?
- Should I ask for "fresh" blood?

Causes of anaemia during critical illness

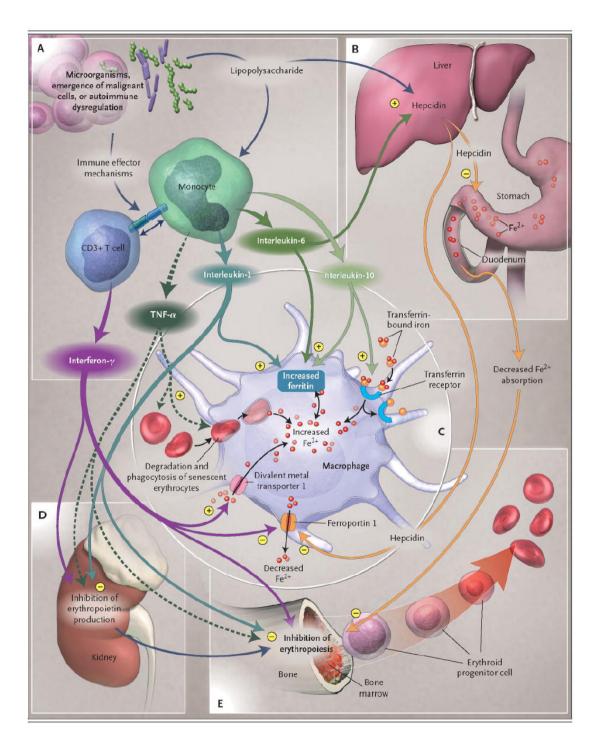
Pre-existing anaemia Acquired anaemia

Haemodilution Blood loss Blood sampling Haemorrhage Reduced red cell survival Reduced red cell production Abnormal iron metabolism Nutritional deficiencies Inappropriate erythropoietin production Abnormal red cell production

What does haemoglobin concentration or HCT mean?

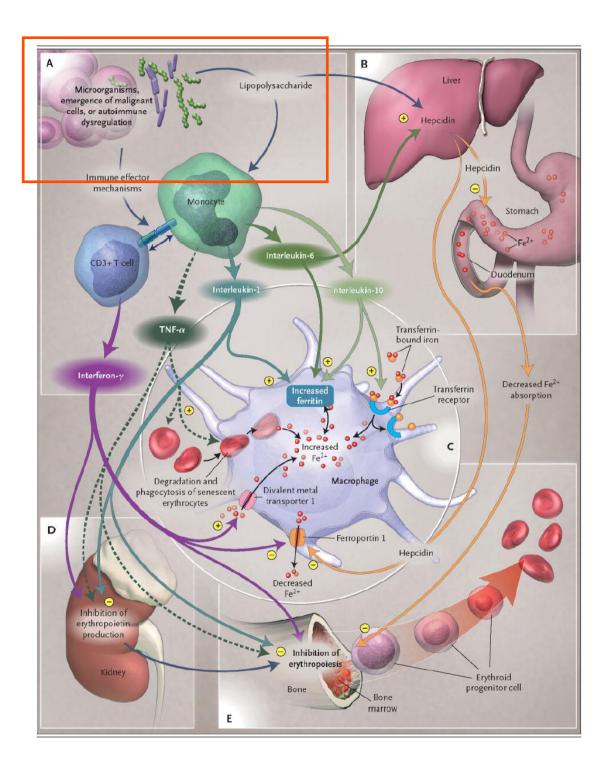
Causes of anaemia during critical illness

Pre-existing anaemia Acquired anaemia


Haemodilution Blood loss Blood sampling Haemorrhage Reduced red cell survival Reduced red cell production Abnormal iron metabolism Nutritional deficiencies Inappropriate erythropoietin production Abnormal red cell production

Erythroid indices during critical Illness

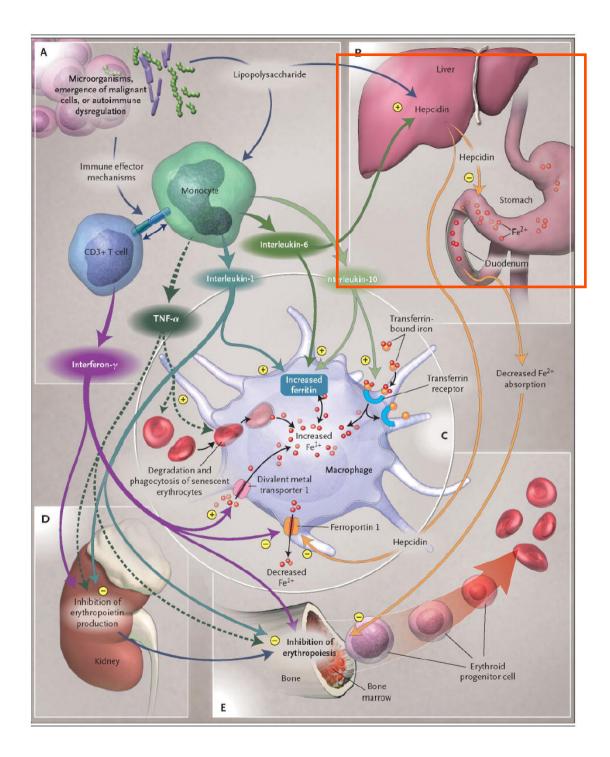
	Change
Serum iron	\checkmark
Total iron binding capacity	\checkmark
Serum iron/total iron binding capacity ratio	\downarrow
Ferritin	↑
Transferrin	\downarrow
Transferrin saturation	Ļ
Vitamin B12 and folate	Ν
Erythropoietin concentration	N/slight increase
Reticulocytes	Non-anaemic levels


Serum transferrin receptors

Normal

The anaemia of chronic disease

Weiss, G. and Goodnough, L. T. *N Engl J Med* 2005;**352**:1011


The inflammatory "hit"

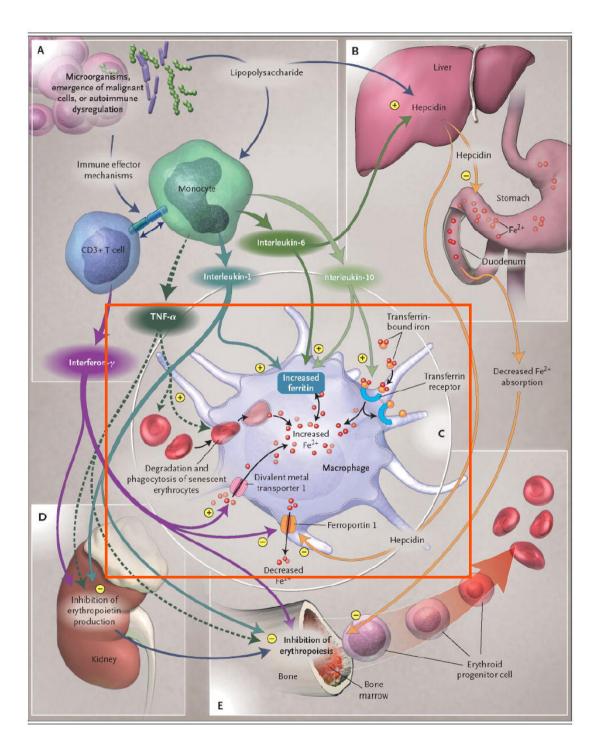
The anaemia of chronic disease

Weiss, G. and Goodnough, L. T. *N Engl J Med* 2005;**352**:1011

Effects of inflammation

- Inhibition of renal erythropoietin production
 - Blunted "inappropriate" response to anaemia
- Direct effects on erythropoiesis in bone marrow
- Effects on acute phase proteins

"Acute phase" effects on the liver

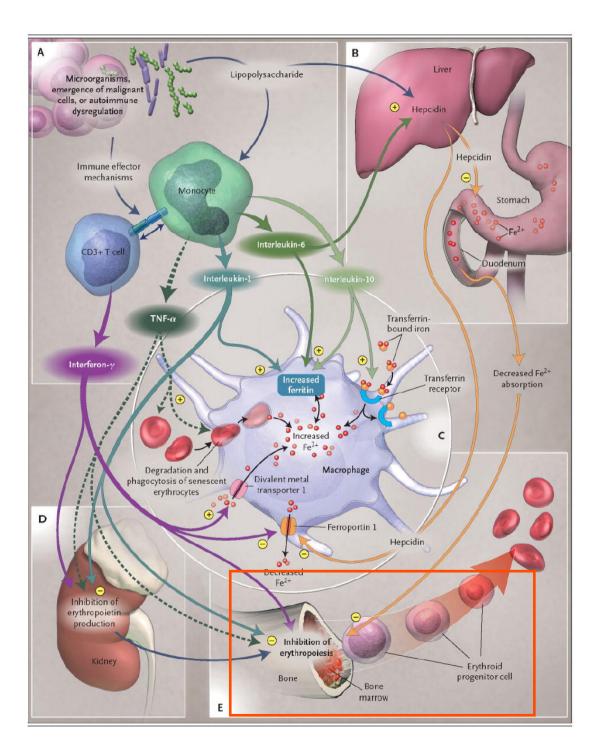

The anaemia of chronic disease

Weiss, G. and Goodnough, L. T. *N Engl J Med* 2005;**352**:1011

Acute phase effects on the liver

- Up-regulation of ferritin production

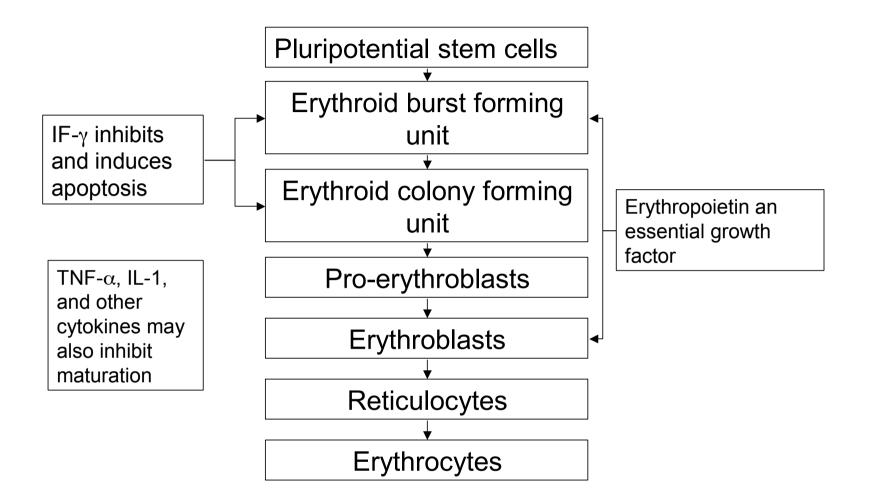
 Increased storage iron
- Down-regulation of transferrin
 production
 - Decreased iron availability for erythropoiesis
- Up-regulation of hepcidin production
 - Decreased duodenal iron absorption


Altered iron handling by macrophages and RES

The anaemia of chronic disease

Weiss, G. and Goodnough, L. T. *N Engl J Med* 2005;**352**:1011

Effects on macrophage and RES


- Increased iron uptake
 - Increased ferritin
 - Opening of divalent metal transported protein
 - Closure of ferroportin 1
- Increased phagocytosis of senescent red cells by activated macrophages
- Increased uptake of transferrin bound iron
- Functional iron deficiency

Impaired erythrogenesis

The anaemia of chronic disease

Weiss, G. and Goodnough, L. T. *N Engl J Med* 2005;**352**:1011

Lack of reticulocyte response

Last Hb prior to ICU discharge among ICU survivors

	Males	Females
Last Hb value in ICU Median (IQR) g/dL	10.0 (9.0 – 11.7)	9.8 (8.8 – 11.0)
Last Hb in ICU < ref range [M <13; F <11.5 g/L] %	87.0	79.6
Last Hb in ICU <9 g/dL %	24.1	27.9

Walsh et al. Intensive Care Medicine 2006; 32: 100-109

Prevalence of anaemia at hospital discharge.						
Hb level	Males (n=161) N (%)	Females (n=122) N (%)	All patients (n=283) N (%)			
Hb < 90 g/L	14 (8.7)	18 (14.8)	32 (11.3)			
Hb < 100g/L	48 (29.8)	44 (36.1)	92 (32.5)			
Hb < reference range.	137 (85.1)	82 (67.2)	219 <mark>(77.4)</mark>			

Walsh et al. Intensive Care Medicine 2006; 32: 1206

	Males n (%) n = 97	Females n (%) n = 65
Normochromic normocytic	76 (78)	56 (86)
Normocytic hyperchromic	10 (10)	4 (6)
Normo/microcytic hypochromic	5 (5)	3 (5)
Other	6 (6)	2 (3)

Walsh et al. Intensive Care Medicine 2006; 32: 1206

Recovery from anaemia over 6 months post-ICU discharge

At 13 weeks: 32% Hb <11 g/dL At 26 weeks: 16% Hb <11 g/dL

Bateman AP, McArdle FI, Walsh TS. Critical Care Medicine; 37(6):1906-12, 2009

Factors associated with slow or failure to recover

- Higher circulating inflammatory markers following discharge (IL-6 and CRP)
- Lack of reticulocyte response
- Erythropoietin concentrations inappropriately low in all patients
- No evidence of nutritional deficiency
- "Inflammatory" anaemia

Questions answered?

- Why are so many critically ill patients anaemic?
- Should I give all patients iron?
- Should I use erythropoietin?
- What is my "default" haemoglobin transfusion trigger?
- What should I do in sepsis?
- What should I do for patients with cardiovascular disease?
- Should I ask for "fresh" blood?

Iron

- Functional not absolute iron deficiency
 - Trends in Pharmacological Sciences 2014;
 35:155-61
- Iron therapy associated with increased infections
- No benefit in trauma critical care
 Crit Care Med 2014; 42:2048–2057
- No RCT evidence in other populations
- Await larger pragmatic trial
 - IRONMAN trial (ACTRN12612001249842)

Questions answered?

- Why are so many critically ill patients anaemic?
- Should I give all patients iron?
- Should I use erythropoietin?
- What is my "default" haemoglobin transfusion trigger?
- What should I do in sepsis?
- What should I do for patients with cardiovascular disease?
- Should I ask for "fresh" blood?

Erythropoietin

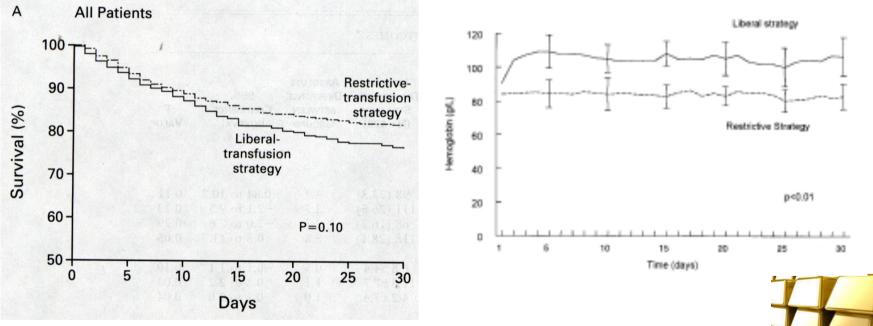
- Pharmacologic doses required in combination with iron
- Sequential trials showed lower bloodsparing effects as transfusion triggers more restrictive
- Not clinically or cost-effective effective in trials with restrictive transfusion triggers
- Excess of thrombotic events

Questions answered?

- Why are so many critically ill patients anaemic?
- Should I give all patients iron?
- Should I use erythropoietin?
- What is my "default" haemoglobin transfusion trigger?
- What should I do in sepsis?
- What should I do for patients with cardiovascular disease?
- Should I ask for "fresh" blood?

Restrictive versus liberal transfusion strategy for red blood cell transfusion: systematic review of randomised trials with meta-analysis and trial sequential analysis

Lars B Holst et al. BMJ 2015; 350 doi: http://dx.doi.org/10.1136/bmj.h1354


		No of ever	nts/total				
	Study or subgroup	Restrictive	Liberal		Weight		Risk of bias
	1.2.1 Low risk of bias	transfusion	transfusion	random (95% CI)	(%)	random (95% CI)	
	Carson 1998 ³²	5/42	2/42		1.0	2.50 (0.51 to 12.17)	0
	Carson 2011 ²⁵	66/1001	76/998	-	16.5	0.87 (0.63 to 1.19)	
	Cooper 2011 ⁷¹	2/24	1/21		0.5	1.75 (0.17 to 17.95)	0 0 0 0 0 0 0 0
	Foss 2009 ²⁸	5/60	0/60		0.3	11.00 (0.62 to 194.63)	
	Hébert 1999 ⁴	95/416	111/419		23.2	0.86 (0.68 to 1.09)	$\overline{\mathbf{\Theta}}$
	Holst 2014 ⁹	216/502	223/496		35.2	0.96 (0.83 to 1.10)	$\overline{\mathbf{\Theta}}$
	Lacroix 2007 ⁵	14/320	14/317		4.4	0.99 (0.48 to 2.04)	$\overline{0}$
	Villanueva 2013 ⁶	23/444	41/445		8.5	0.56 (0.34 to 0.92)	$\overline{0}$
	Walsh 2013 ¹⁰	19/51	27/49		10.4	0.68 (0.44 to 1.05)	
	Subtotal	445/2860	495/2847	(4)	100.0	0.86 (0.74 to 1.01)	s) (s) (s) (s) (s) (s) (s) (s) (
	Test for heterogeneity: $\tau^2 {=} 0.01, \chi^2 {=} 10$	0.96, df=8, P=	0.20, l ² =27%				Random sequence generation (selection bias) Allocation concealment (selection bias) Ing of participants and personnel (performance bias) Blinding of outcome assessment (detection bias) Incomplete outcome data (attrition bias) Selective reporting (reporting bias) Baseline imbalance Sponsor bias Academic bias
Г	Test for overall effect: Z=1./9, P=0.0/	10					tior tior titior titior titing mba
L	Total (95% CI)	445/2860	495/2847	· · · · · · · · · · · · · · · · · · ·	100.0	0.86 (0.74 to 1.01)	elec elec form attr attr ne i Spo cad
L	Test for heterogeneity: $\tau^2 = 0.01$, $\chi^2 = 10$	0.96, df-8, P-	0.20, 1 ² -27%				n (s nt (s (per (per t (d t (d t (d t (d t (d t (d t (d t (d
	Test for overall effect: z=1.79, P=0.07						atio mer nel nen nen nen nen nen nen Ba
	Test for subgroup differences: not app	licable		0.01 0.1 1 10 100			ner son son om epo
				Favours Favours Favours restrictive strategy liberal strategy			e ge conc ass ass outc
				Testiletive strategy tiberat strategy			Random sequence generation Allocation concealment Blinding of participants and personnel (p Blinding of outcome assessment Incomplete outcome dat Selective reporting Bas
							equ cati ants mpl Se
							m s Allo of ou ncoi
		07/1	-1(11)			ndo ng c
	RR 0.86 (0/4	.0 1.0	JI)			Ra g of indi
				-			Bl
							Bli

RR 0.86 (074 to 1.01)

A MULTICENTER, RANDOMIZED, CONTROLLED CLINICAL TRIAL OF TRANSFUSION REQUIREMENTS IN CRITICAL CARE PAUL C. HÉBERT, M.D., GEORGE WELLS, PH.D., MORRIS A. BLAJCHMAN, M.D., JOHN MARSHALL, M.D., CLAUDIO MARTIN, M.D., GIUSEPPE PAGLIARELLO, M.D., MARTIN TWEEDDALE, M.D., PH.D., IRWIN SCHWEITZER, M.SC., ELIZABETH YETIS'R, M.SC., AND THE TRANSFUSION REQUIREMENTS IN CRITICAL CARE INVESTIGATORS FOR THE CANADIAN CRITICAL CARE TRIALS GROUP*

"TRICC" NEJM 1999

Aggregate mortality at 60 days 25% Difference in mortality at 60 days 3-8% overall

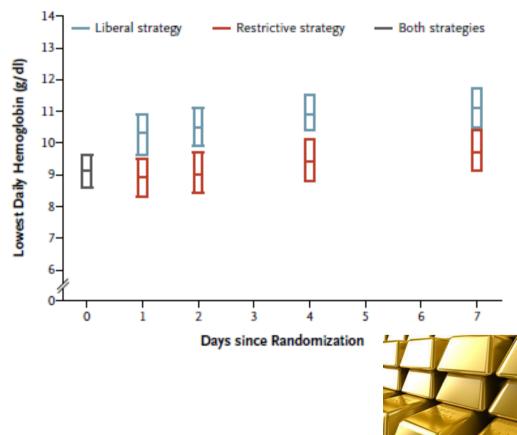
Main differences: [1] Degree of anaemia [2] Exposure to stored nonleucodepleted red cells

Mean time in study 11 days Difference in RBC exposure 2.7 units Difference in proportion exposed 33%

Outcome Measure	RESTRICTIVE- TRANSFUSION STRATEGY (N=418)	LIBERAL- TRANSFUSION STRATEGY (N=420)	ABSOLUTE DIFFERENCE BETWEEN GROUPS	95% Confidence Interval	P Value	
			р	percent		
Death — no. (%)						
30-day	78 (18.7)	98 (23.3)	4.7	-0.84 to 10.2	0.11	
60-day†	95 (22.7)	111 (26.5)	3.7	-2.1 to 9.5	0.23	
ICU	56 (13.4)	68 (16.2)	2.3	-2.0 to 7.6	0.29	
Hospital	93 (22.2)	118 (28.1)	5.8	-0.3 to 11.7	0.05	
Multiple-organ-dysfunction score						
Unadjusted score	8.3±4.6	8.8±4.4	0.5	0.1 to 1.1	0.10	
Adjusted score‡	10.7 ± 7.5	11.8 ± 7.7	1.1	0.8 to 2.2	0.03	
Change from base-line score§	3.2 ± 7.0	4.2 ± 7.4	1.0	0.1 to 2.0	0.04	
No. of organs failing no. (%) 0	100 (23.9)	82 (19.5)				
1	136 (32.5)	149 (35.5)				
2	109 (26.1)	108 (26.0)				
2 3	51 (12.2)	63 (15.0)				
>3	22 (5.3)	18 (4.3)	1.8¶	-3.4 to 7.1¶	0.53	
Length of stay — days	, ,	· /	л			
ICU	11.0 ± 10.7	11.5 ± 11.3	0.5	-1.0 to 2.1	0.53	
Hospital	34.8 ± 19.5	35.5 ± 19.4	0.7	-1.9 to 3.4	0.58	

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812 DECEMBER 29, 2011


11 VOL. 365 NO. 26

Liberal or Restrictive Transfusion in High-Risk Patients after Hip Surgery

Jeffrey L. Carson, M.D., Michael L. Terrin, M.D., M.P.H., Helaine Noveck, M.P.H., David W. Sanders, M.D., Bernard R. Chaitman, M.D., George G. Rhoads, M.D., M.P.H., George Nemo, Ph.D., Karen Dragert, R.N., Lauren Beaupre, P.T., Ph.D., Kevin Hildebrand, M.D., William Macaulay, M.D., Courtland Lewis, M.D., Donald Richard Cook, B.M.Sc., M.D., Gwendolyn Dobbin, C.C.R.P., Khwaja J. Zakriya, M.D., Fred S. Apple, Ph.D., Rebecca A. Horney, B.A., and Jay Magaziner, Ph.D., M.S.Hyg., for the FOCUS Investigators*

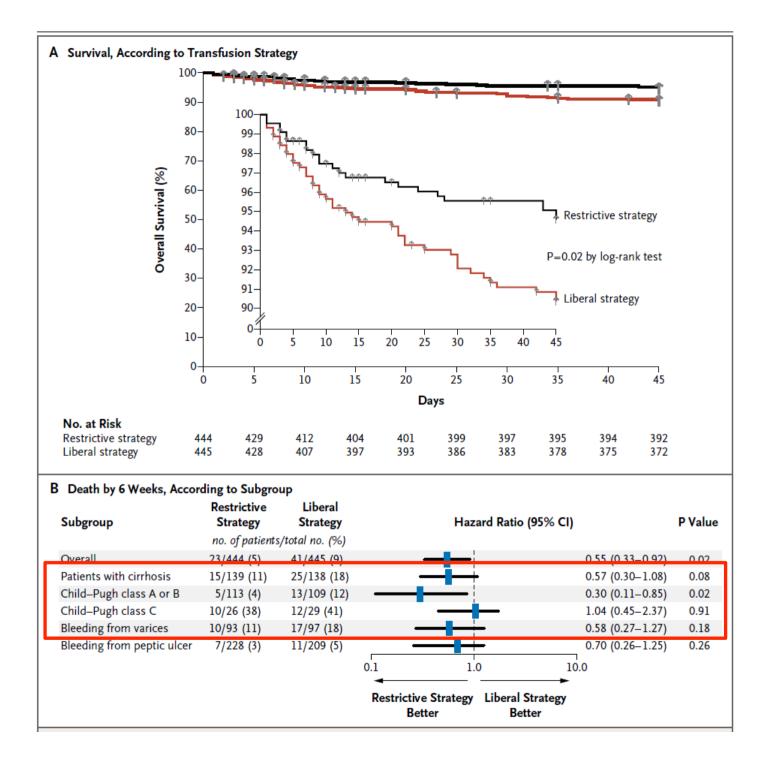
Hb "symptomatic" or minimum 80 g/L versus 100 g/L

- Patients aged >50 years with cardiovascular disease or risk factors
- Mean age 82 years; cardiovascular disease 63%
- Protocolised liberal versus
 "clinician judgement" restrictive
- RBC use median 0 versus 2 units
- No difference in death, ability to walk unaided, or cardiovascular complications

Transfusion Strategies for Acute Upper Gastrointestinal Bleeding

Càndid Villanueva, M.D., Alan Colomo, M.D., Alba Bosch, M.D., Mar Concepción, M.D., Virginia Hernandez-Gea, M.D., Carles Aracil, M.D., Isabel Graupera, M.D., María Poca, M.D., Cristina Alvarez-Urturi, M.D., Jordi Gordillo, M.D., Carlos Guarner-Argente, M.D., Miquel Santaló, M.D., Eduardo Muñiz, M.D., and Carlos Guarner, M.D.

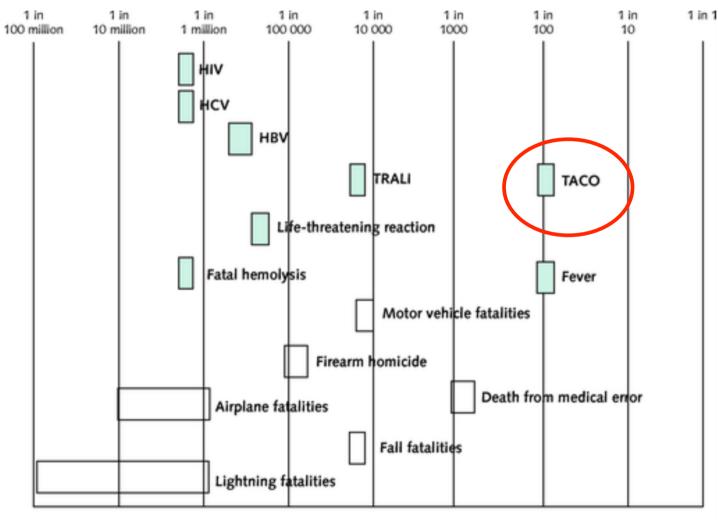
Exclusions


- Massive exsanguinating bleeding
- Cardiovascular disease

Stratified for presence of cirrhosis

- Single unit transfusions
- 8 hourly Hb during first 48 hours; daily thereafter
- All endoscoped within 6 hours (banding, sclerotherapy
- Portal hypertension: somatostatin infusion; prophylactic antibiotics
- Portal pressure measures within 48 hours and repeated after 2-3 days
- 31% cirrhosis; 49% peptic ulcer bleeding

Hb 70g/L versus 90g/L


Outcomes

- Absolute risk difference for mortality in cirrhotic group 11 vs 18% (NNT 14)
- Overall excess deaths in liberal group from uncontrolled bleeding (0.7 vs 3.1%)
- More re-bleeding and rescue therapy in liberal group
- Small (significant) increase in PPG in liberal group vs no change in restrictive group
- More pulmonary oedema and cardiac adverse events in liberal group
- Fluid overload/hypervolaemia may have mediated adverse effects

Annals of Internal Medicine

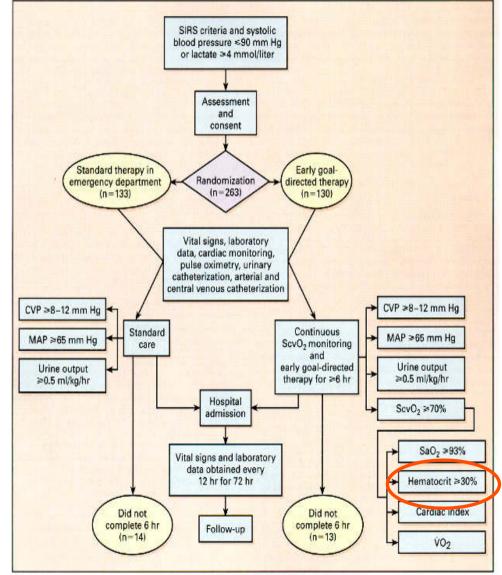
ESTABLISHED IN 1927 BY THE AMERICAN COLLEGE OF PHYSICIANS

Ann Intern Med. 2012;157(1):49-58. doi:10.7326/0003-4819-157-1-201206190-00429

Risk

The "default" haemoglobin trigger

- In "all comer" populations there is no benefit from transfusion at haemoglobin >70 g/L
- Strongest evidence for younger patients with lower illness severity
- Adverse effects may result from:
 - Hypervolaemia
 - The blood product
- When does this not apply?


- Why are so many critically ill patients anaemic?
- Should I give all patients iron?
- Should I use erythropoietin?
- What is my "default" haemoglobin transfusion trigger?
- What should I do in sepsis?
- What should I do for patients with cardiovascular disease?
- Should I ask for "fresh" blood?

Early sepsis: the first "golden 6 hours"?

Goal directed therapy works if applied early (Rivers E. NEJM 2001;345:1368-77)

Transfusing red cells to achieve a HCT >0.3 (Hb >10 g/dL) was part of the protocol

Only introduced if ScvO₂ <70%

Further down the River(s)

Propensity-matched studies:

•Association between early transfusion and improved outcome in sepsis

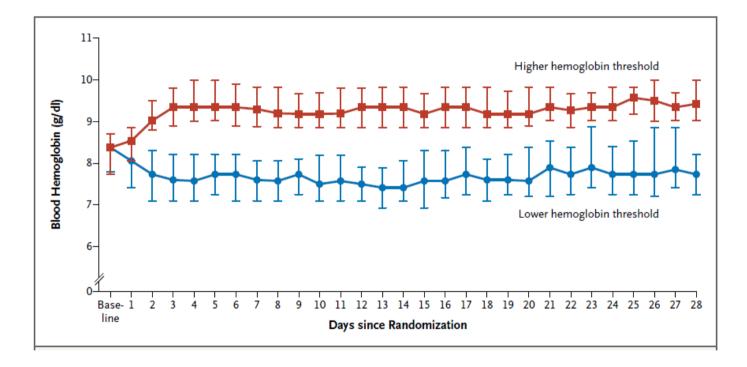
Trials of EGDT

•ProMISE (UK) "negative"

- •PROCESS (USA) "negative"
- •ARISE (Australasia) "negative"

TRISS trial (NEJM 2014;371:1381-91)

- •Not an early sepsis intervention trial
- •Not guided by algorithm based on correction of inadequate oxygen delivery


Comparing the "Rivers" and ARISE trials

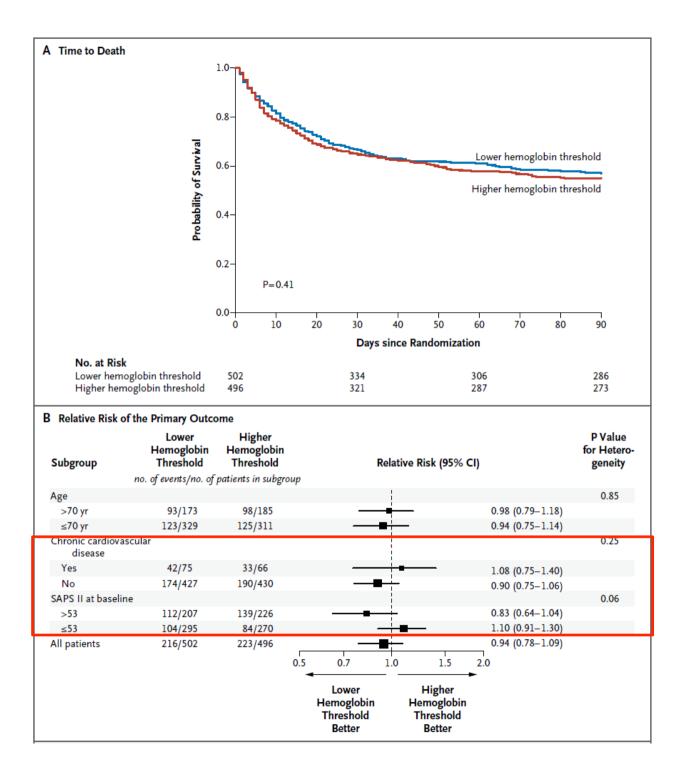
	Rivers		ARISE			
ED admission to randomisation	1.5 hours		2.8 hours			
APACHE II score	21		16			
Process	Usual	EGDT	Usual	EGDT		
ScVO ₂	49%	49%	-	73%		
Antibiotics	89% in first 6 hours		100% (median time 70 minutes)			
Fluids 0-6 hours	3500	4900	1700 (2600)	2000 (2500)		
RBCs (% transfused)	19	65	7	14		
Vasopressors	30	27	58 (22)	67 (22)		
Dobutamine	1	14	3	15		
6 hour parameters						
Lactate	4.9	4.3	2.9	2.8		

ORIGINAL ARTICLE

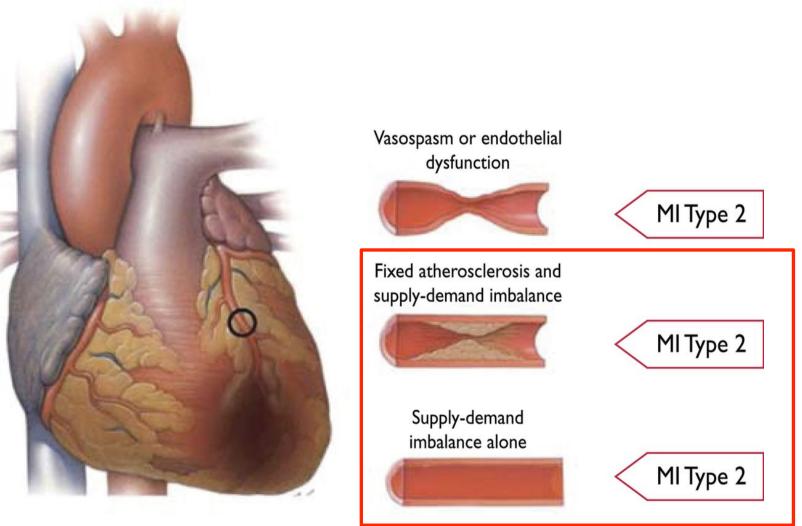
Lower versus Higher Hemoglobin Threshold for Transfusion in Septic Shock

Lars B. Holst, M.D., Nicolai Haase, M.D., Ph.D., Jørn Wetterslev, M.D., Ph.D., Ian Wernerman, M.D., Ph.D., Anne B. Guttormsen, M.D., Ph.D.,

Transfusion exposure: restrictive liberal


64% (median 1 unit) 99% (median 3 units)

Hb 70g/L vs 90g/L


Characteristic	Lower Hemoglobin Threshold (N = 502)	Higher Hemoglobin Threshold (N = 496)
Age — yr		
Median	67	67
Interquartile range	57-73	58-75
Male sex — no. (%)	272 (54.2)	259 (52.2)
Chronic cardiovascular disease — no. (%)†	75 (14.9)	66 (13.3)
Chronic lung disease — no. (%)‡	111 (22.1)	102 (20.6)
Hematologic cancer — no. (%)	39 (7.8)	36 (7.3)
Admission to a university hospital — no. (%)	323 (64.3)	324 (65.3)
Surgery during index hospitalization — no. (%)		
Emergency	191 (38.0)	217 (43.8)
Elective	59 (11.8)	53 (10.7)
Source of ICU admittance — no. (%)		
Emergency department	90 (17.9)	79 (15.9)
General ward	268 (53.4)	257 (51.8)
Operating or recovery room	113 (22.5)	121 <mark>(</mark> 24.4)
Other ICU	31 (6.2)	39 (7.9)
Source of sepsis — no. (%)∬		
Lungs	267 (53.2)	259 (52.2)
Abdomen	206 (41.0)	198 <mark>(</mark> 39.9)
Urinary tract	58 (11.6)	61 (12.3)
Soft tissue	59 (11.8)	59 (11.9)
Other	50 (10.0)	47 (9.5)
Positive culture from blood or sterile site	188 (37.5)	160 (32.3)
Interval from ICU admission to randomization — hr		
Median	23	20
Interquartile range	7–50	7–43
SAPS II ¶		
Median	51	52
Interquartile range	42–62	44–64

Mean time to recruitment 21 hours post-ICU admission

- Why are so many critically ill patients anaemic?
- Should I give all patients iron?
- Should I use erythropoietin?
- What is my "default" haemoglobin transfusion trigger?
- What should I do in sepsis?
- What should I do for patients with cardiovascular disease?
- Should I ask for "fresh" blood?

Differentiation between myocardial infarction (MI) types 1 and 2 according to the condition of the coronary arteries.

Thygesen K et al. Eur Heart J 2012;eurheartj.ehs184

Issues in relation to transfusion: different patient types

- Cardiac surgery
- Stable chronic IHD or cardiovascular disease with concurrent disease
- Acute coronary syndrome

Liberal or restrictive transfusion after cardiac surgery.

Murphy GJ; Pike K; Rogers CA; Wordsworth S; Stokes EA; Angelini GD; Reeves BC; TITRe2 Investigators

New England Journal of Medicine. 372(11):997-1008, 2015 Mar 12.

DOI: 10.1056/NEJMoa1403612

Hb 75g/L versus 90g/L

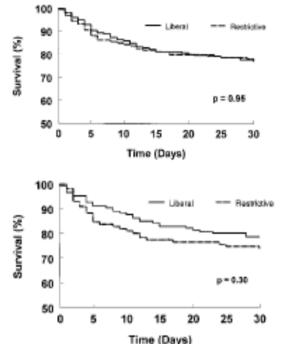
- Randomisation post-surgery
- Transfusion exposure 53% versus 92%
- Median 1 unit versus 2 units

Outcome	Restrictive Transfusion Threshold T (N = 1000)	Subgroup	No. of Patients		trictive	Liberal	Odds Ratio (95% CI)			P Value for Interaction		
		Surgery type			n of second	10101110. (10)				1		0.64
		CABG	400	77/1	92 (40.1)	85/208 (40.9)		-		11	0.92 (0.61-1.40)	
		Non-CABG	1487		43 (33.8)	229/744 (30.8)		14			1.17 (0.94-1.46)	
Serious infection or ischemic event: primary outcome		Age										0.45
		<75 ут	604		96 (36.5)	94/308 (30.5)		+	-	•	1.30 (0.92-1.84)	
Overall	331/944 (35.1)	≥75 yr	1302	223/6-	48 (34,4)	223/654 (34.1)		+		-1	1.03 (0.81-1.30)	10025
Infectious event†	238/936 (25.4)	Diabetes								1		0.76
Sepsis	210/982 (21.4)	Yes	567		75 (41.5)	118/292 (40.4)			•		1.04 (0.74-1.47)	
Wound infection	55/921 (6.0)	No COPD or asthma	1337	21//0	69 (32.4)	199/668 (29.8)				and a	1.14 (0.90-1.45)	0.16
		Yes	239	49/14	06 (46.2)	48/133 (36.1)		-		1	→ 1.59 (0.93-2.71)	0.10
Ischemic event	156/991 (15.7)	No	1667		38 (33.7)	269/829 (32.4)		-	0		1.06 (0.86-1.30)	
Permanent stroke	15/989 (1.5)	Renal impairment				sectors (sec.)				1		0.67
Myocardial infarction	3/987 (0.3)	Estimated GFR ≤60	371	85/1	81 (47.0)	85/190 (44.7)		+	•	1 1	1.05 (0.69-1.59)	
Gut infarction	6/987 (0.6)	Estimated GFR >60	1535	246/7	63 (32.2)	232/772 (30.1)		F			1.13 (0.90-1.41)	
Acute kidney injury	140/989 (14.2)	Sex								1		0.27
and the second	· · · · ·	Male	583	1000	70 (42.2)	129/313 (41.2)		-	•		1.01 (0.72-1.42)	
Stage 1	49/989 (5.0)	Female	1323	217/6	74 (32.2)	188/649 (29.0)		4			1.19 (0.94-1.51)	
Stage 2	39/989 (3.9)	LV function Good	1145	218/5	(0.128.3)	204/576 (35.4)				i.	1.14 (0.89-1.46)	0.33
Stage 3	50/989 (5.1)	Moderate or poor	761		69 (38.3) 75 (30.1)	204/576 (35.4) 113/386 (29.3)		1		1	1.04 (0.76-1.42)	
Secondary outcomes		moderate or pror	101	110/0	12 (20.1)	115/500 (25.5)	0.5	0.67	1.0	1.5	2.0	
No. of hours in ICU or high- dependency unit:							-	ictive Group		peral Gro		
Median	49.5							Better		Better		
Interguartile range	21.9-99.7	20.1-94.8										
No. of days in hospital¶												
Median	7.0	7.0	1.00 (0.92-	1 101	0.94							
Interguartile range	5.0-10.0	5.0-10.0	1.00 10.02	1.10/3	0.54							
All-cause mortality at 90 days	42/1000 (4.2)	26/1003 (2.6)	1.64 (1.00-	2 67\	0.045							
Clinically significant pulmonary	127/979 (13.0)	116/982 (11.8)	1.11 (0.85-	12	0.45	╇┛						
complications	127/373 (13.0)	110/902 (11.0)	1.11 (0.05-	1.45]*	0.45							
All-cause mortality at 30 days	26/1000 (2.6)	19/1003 (1.9)										

rules regarding missing data outlined in the statistical analysis plan in the study protocol). For this treatment effect, we estimated an odds ratio of 1.07 (95% CI, 0.85 to 1.36; P=0.55). The duration of stay in the intensive care unit (ICU) or high-dependency unit after randomization was 0 days for 63 patients in the restrictive-threshold group and 61 patients in the liberal-threshold group; data were censored for 23 patients in the restrictive-threshold group and 15 patients in the liberal-threshold group. In addition, 37 patients in the restrictive-threshold group and 32 patients in the liberal-threshold group had more than one admission to the ICU or

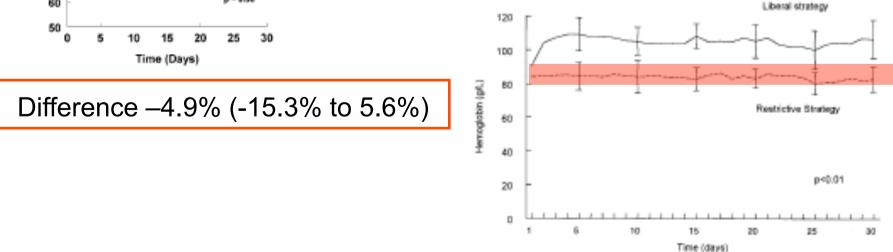
strictive-threshold group and 32 patients in the liberal-threshold group had more than one admission to high-dependency unit. This value is a hazard ratio.

The duration of hospital stay after randomization was 0 days for 4 patients in the restrictive-threshold group and 2 patients in the liberal-threshold group; data were censored for 25 patients in the restrictive-threshold group and 17 patients in the liberal-threshold group.


Sensitivity analyses suggested greater AKI

Indications for red blood cell transfusion in cardiac surgery: a systematic review and meta-analysis

Patel et al. Lancet Haematology. Published online November 2015. http:// dx.doi.org/10.1016/S2352-3026(15)00198-2


Patient Author Year group	Odds % Weight ratio (95% CI) (Fixed Effects)	
Cardiac Surgical RCT Murphy 2015 Shehata 2011 Hajjar 2010 Murphy 2007a Bracey 1999 Fixed Effects (I-squared = 0.0%, p = 0.455) Random Effects	0.61 (0.37, 1.00) 6.82 0.22 (0.02, 2.10) 0.33 0.85 (0.39, 1.81) 2.89 0.70 (0.26, 1.89) 1.72 1.96 (0.48, 7.95) 0.86 0.70 (0.49, 1.02) 12.61 0.70 (0.49, 1.02)	Cardiac surgery trials
Non Cardiac Surgical RCT deAlmedia 2015 Critical Care Holst 2014 Critical Care Walsh 2013 Critical Care Hebert 2001 Critical Care	0.32 (0.14, 0.77) 2.26 1.08 (0.84, 1.39) 26.95 1.62 (0.73, 3.59) 2.65 1.02 (0.62, 1.68) 6.78	
Carson 2013 Coronary artery disease Cooper 2011 Coronary artery disease Carson 2011 Coronary artery disease	1.33 (0.05, 1.05) 15.00 0.12 (0.01, 1.05) 0.37 0.55 (0.05, 6.54) 0.27 1.23 (0.81, 1.80) 9.83	ACS feasibility trials
So-Osman 2010 Orthopaedics Foss 2009 Orthopaedics Grover 2005 Orthopaedics Carson 1998 Orthopaedics	1.97 (0.18, 21.88) 0.29 0.08 (0.00, 1.54) 0.20 3.03 (0.12, 75.14) 0.16 1.00 (0.06, 16.53) 0.21	
Lacroix 2007 Paediatrics	1.01 (0.47, 2.15) 2.93 0.78 (0.49, 1.24) 7.71 0.47 (0.04, 5.36) 0.28 0.86 (0.33, 2.22) 1.88	
Villanueva 2013 Upper GI Haemorrhage Colomo 2008 Upper GI Haemorrhage Bush 1997 Vascular Surgery Fixed Effects (I-squared = 29.7%, p = 0.109) Random Effects	1.86 (1.10, 3.15) 6.03 1.56 (0.71, 3.45) 2.68 1.02 (0.24, 4.34) 0.81 1.10 (0.96, 1.27) 87.39 1.07 (0.88, 1.31)	
Heterogeneity between groups: p = 0.024 Overall Fixed Effects (I-squared = 33.0%, p = 0.060) Overall Random Effects	1.04 (0.92, 1.19) 100.00 1.00 (0.82, 1.21)	
.02.05 .2 .5 1 2 4 8 16		
Tx Beneficial Tx Harmful		

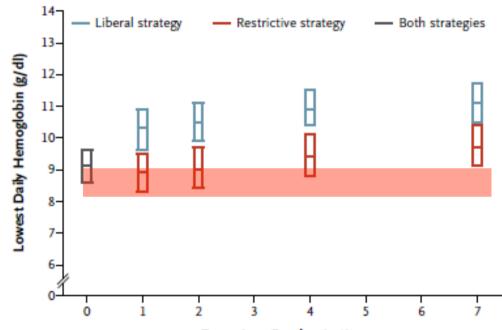
Is low transfusion threshold safe in critically ill patients with cardiovascular disease? Hebert PC et al. Crit Care Med 2001; 29: 227

Subgroup of 357 patients with cardiovascular disease

Subgroup of 257 patients with ischaemic heart disease 30 day mortality

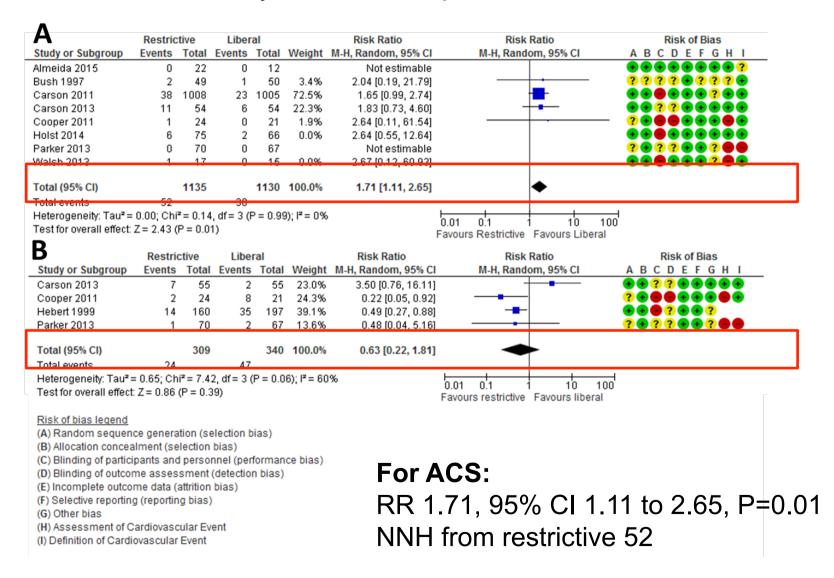
The NEW ENGLAND JOURNAL of MEDICINE

DECEMBER 29, 2011

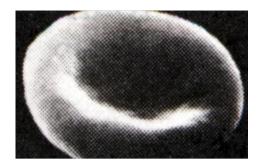

VOL. 365 NO. 26

ESTABLISHED IN 1812

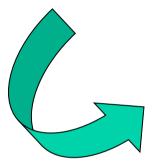
Liberal or Restrictive Transfusion in High-Risk Patients after Hip Surgery

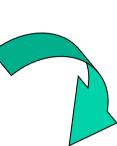

Jeffrey L. Carson, M.D., Michael L. Terrin, M.D., M.P.H., Helaine Noveck, M.P.H., David W. Sanders, M.D., Bernard R. Chaitman, M.D., George G. Rhoads, M.D., M.P.H., George Nemo, Ph.D., Karen Dragert, R.N., Lauren Beaupre, P.T., Ph.D., Kevin Hildebrand, M.D., William Macaulay, M.D., Courtland Lewis, M.D., Donald Richard Cook, B.M.Sc., M.D., Gwendolyn Dobbin, C.C.R.P., Khwaja J. Zakriya, M.D., Fred S. Apple, Ph.D., Rebecca A. Horney, B.A., and Jay Magaziner, Ph.D., M.S.Hyg., for the FOCUS Investigators*

- Patients aged >50 years with cardiovascular disease or risk factors
- Mean age 82 years; cardiovascular disease 63%
- Protocolised liberal versus "clinician judgement" restrictive
- No difference in death or physical ability
- No difference in cardiovascular complications
- Trend to higher rates of MI

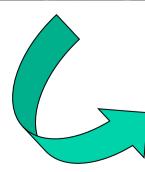


Days since Randomization


Acute coronary syndrome and pulmonary oedema in patients with chronic cardiovascular disease Anne-Marie Docherty et al. BMJ; in press

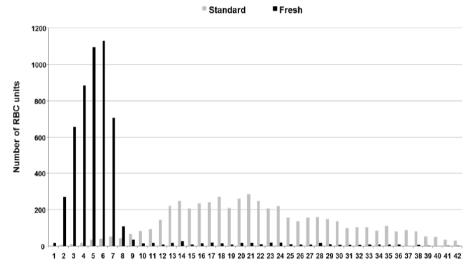

- Why are so many critically ill patients anaemic?
- Should I give all patients iron?
- Should I use erythropoietin?
- What is my "default" haemoglobin transfusion trigger?
- What should I do in sepsis?
- What should I do for patients with cardiovascular disease?
- Should I ask for "fresh" blood?

Membrane phospholipid vesiculation and blebbing Cytoskeletal remodelling Dissociation of membrane bi-layer from skeletal cytoskeleton Loss of membrane (?pro-thrombotic)


Damage and Loss of band 3 protein (increased susceptibility to oxidation) Increased cellular permeability

Depletion of cellular energy (ATP and total ATP/ADP/AMP stores) (impaired oxygen release) Lipid peroxidation Proteolysis Ca⁺⁺ influx

Accumulation of bioreactive substances (proinflammatory?)


Physical loss of membrane (contains lipids and cytoskeletal protein) Altered volume to surface area Micro-vesicle release Loss of deformability (?↓ transit) Increased interaction with endothelium (?↑ adherence)

Age of transfused blood in critically ill adults.

Lacroix J; Hebert PC; Fergusson DA; Tinmouth A; Cook DJ; Marshall JC; Clayton L; McIntyre L; Callum J; Turgeon AF; Blajchman MA; Walsh TS; Stanworth SJ; Campbell H; Capellier G; Tiberghien P; Bardiaux L; van de Watering L; van der Meer NJ; Sabri E; Vo D; ABLE Investigators; Canadian Critical Care Trials Group New England Journal of Medicine. 372(15):1410-8, 2015 DOI: 10.1056/NEJMoa1500704

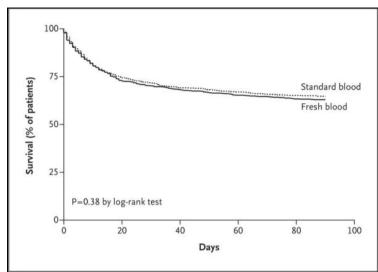

Length of Storage (days)

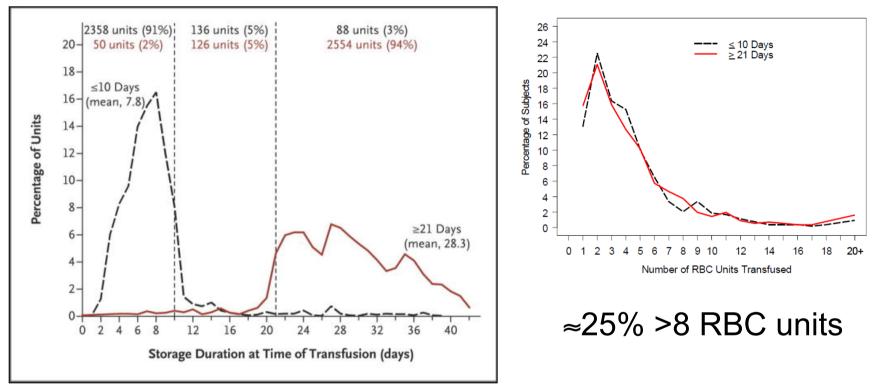
Figure S2. Distribution of red cell units per length of storage, as transfused to patients allocated to the fresh arm (black bars) and to the standard arm (white bars).

No control over transfusion practice

Mean transfusion trigger 75g/L Mean 4.3 red cell units

No difference in any trial outcome

or for any pre-defined sub-group


A Primary Outcome and Secondary Outcomes Related to Death and Major Illnesses Fresh Standard Absolute Risk Difference (95% CI) Outcome Blood Blood no. of patients/total no. (%) percentage points 448/1211 (37.0) Primary outcome: death by day 90 430/1219 (35.3) 1.7 (-2.1 to 5.5) Secondary outcomes Death In ICU 324/1214 (26.7) 295/1217 (24.2) 2.5 (-1.0 to 5.9) In hospital 403/1212 (33.3) 386/1211 (31.9) 1.4 (-2.3 to 5.1) By day 28 371/1214 (30.6) 353/1225 (28.8) 1.7 (-1.9 to 5.4) Major Illnesses 0.4 (-2.3 to 3.1) Multiple organ dysfunction syndrome 162/1206 (13.4) 157/1207 (13.0) Acute respiratory distress syndrome 69/1206 (5.7) 80/1207 (6.6) -0.9 (-2.8 to 1.0) Cardiovascular failure 61/1206 (5.1) 51/1207 (4.2) 0.8 (-0.8 to 2.5) Cardiac ischemia or infarction 54/1206 (4.5) 44/1207 (3.6) 0.8 (-0.7 to 2.4) Deep-vein thrombosis or pulmonary 43/1206 (3.6) 43/1207 (3.6) 0.0 (-1.5 to 1.5) embolism Nosocomial infection 411/1206 (34.1) 378/1207 (31.3) 2.8 (-0.9 to 6.5) Acute transfusion reaction 4/1206 (0.3) 6/1207 (0.5) -0.2 (-0.7 to 0.3) -10.0 -5.0 0.0 5.0 10.0 Fresh Blood Standard Blood Better Better **B** Other Secondary Outcomes Standard Fresh Blood Mean Difference (95% CI) Outcome Blood Mean (= SD) value MODS Highest score 6.4±3.2 6.2±3.2 0.2 (-0.1 to 0.4) 1.4+1.9 -0.1 (-0.2 to 0.1) Delta score 1.4 ± 1.8 Duration of supportive care (days) 14.7±14.9 0.3 (-1.1 to 1.6) Mechanical ventilation 15.0±18.0 Cardiac or vasoactive drugs 7.1±10.2 7.5+11.2 -0.4 (-1.2 to 0.5) Extrarenal epuration 2.5±10.1 2.3+8.3 0.2 (-0.6 to 0.9) Length of stay (days) In ICU 15.3±15.4 15.3±14.8 0.1 (-1.2 to 1.3) 34.4±39.5 33.9±38.8 0.5 (-2.6 to 3.7) In hospital -10.0 10.0 -5.0 0.0 5.0 Standard Blood Fresh Blood Better Better

Effects of red-cell storage duration on patients undergoing cardiac surgery.

Steiner ME; Ness PM; Assmann SF; et al

New England Journal of Medicine. 372(15):1419-29, 2015 Apr 9.

DOI: 10.1056/NEJMoa1414219

Outcome	Red-Cell Storage ≤10 Days (N = 538)	Red-Cell Storage ≥21 Days (N=560)	Estimated Treatment Effect (95% CI)	P Value
Primary outcome: ∆MODS at 7 days†	8.5±3.6	8.7±3.6	-0.2 (-0.6 to 0.3)	0.44
Secondary outcomes‡				
ΔMODS at 28 days	8.7±4.0	9.1±4.2	-0.3 (-0.8 to 0.2)	0.20
All-cause mortality — no. (%)				
7 Days	15 (2.8)	11 (2.0)	0.8 (-1.0 to 2.7)	0.43
28 Days	23 (4.4)	29 (5.3)	-0.9 (-3.4 to 1.7)	0.57
Median stay in ICU — days§	3	3	1.07 (0.95 to 1.21)	0.27
Median stay in hospital — days§	8	8	0.99 (0.88 to 1.13)	0.92

* Plus-minus values are unadjusted means ±SD. Unless otherwise noted, all outcomes were assessed through postoperative day 7, hospital discharge, study withdrawal, or death, whichever occurred first. The group receiving red cells stored for 21 days or more is the reference group. Analysis of covariance was adjusted for baseline value.

† For the change in MODS at 7 days, data were unavailable for four participants in the group assigned to receive red cells stored for 10 days or less and for seven in the group assigned to receive red cells stored for 21 days or more.

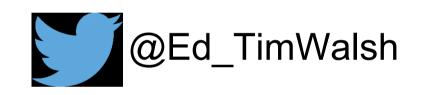
‡ Data on the change in MODS at 28 days were unavailable for 7 participants in the group assigned to receive red cells stored for 10 days or less and for 5 in the group assigned to receive red cells stored for 21 days or more. Data on allcause mortality through 7 days were unavailable for 7 participants in the group assigned to receive red cells stored for 10 days or less and for 4 in the group assigned to receive red cells stored for 21 days or more; data on allcause mortality through 28 days were unavailable for 14 participants in the group assigned to receive red cells stored for 10 days or less and for 9 in the group assigned to receive red cells stored for 21 days or more.

I Length of stay was measured from date of surgery through day 28±3, death, hospital discharge, or the end of the study, whichever occurred first. For these outcomes, the estimated treatment effect was calculated as a hazard ratio with the use of a Cox model.

No difference in organ dysfunction

No difference in other outcomes

- Why are so many critically ill patients anaemic? Multifactorial; impaired erythropoiesis
- Should I give all patients iron?
- Should I use erythropoietin?
- What is my "default" haemoglobin transfusion trigger?
- What should I do in sepsis?
- What should I do for patients with cardiovascular disease?
- Should I ask for "fresh" blood?


- Why are so many critically ill patients anaemic?
- Should I give all patients iron? No
- Should I use erythropoietin? No
- What is my "default" haemoglobin transfusion trigger?
- What should I do in sepsis?
- What should I do for patients with cardiovascular disease?
- Should I ask for "fresh" blood?

- Why are so many critically ill patients anaemic?
- Should I give all patients iron?
- Should I use erythropoietin?
- What is my "default" haemoglobin transfusion trigger? 70g/L for the young, less severely ill, and those without cardiovascular disease
- What should I do in sepsis?
- What should I do for patients with cardiovascular disease?
- Should I ask for "fresh" blood?

- Why are so many critically ill patients anaemic?
- Should I give all patients iron?
- Should I use erythropoietin?
- What is my "default" haemoglobin transfusion trigger?
- What should I do in sepsis? Not sure in early stage!
- What should I do for patients with cardiovascular disease?
- Should I ask for "fresh" blood?

- Why are so many critically ill patients anaemic?
- Should I give all patients iron?
- Should I use erythropoietin?
- What is my "default" haemoglobin transfusion trigger?
- What should I do in sepsis?
- What should I do for patients with cardiovascular disease? Use a Hb trigger >80g/L
- Should I ask for "fresh" blood?

- Why are so many critically ill patients anaemic?
- Should I give all patients iron?
- Should I use erythropoietin?
- What is my "default" haemoglobin transfusion trigger?
- What should I do in sepsis?
- What should I do for patients with cardiovascular disease?
- Should I ask for "fresh" blood? No

twalsh@staffmail.ed.ac.uk

EDINBURGH CRITICAL CARE RESEARCH GROUP