## 2015 – A Year of Critical Care

Rob Mac Sweeney NEICS Spring Meeting 2016

## 2015 – A Year of Critical Care

@critcarereviews | rob@criticalcarereviews.comkmi





## Health Research Board of Ireland

## Health Research Board of Ireland

Irish Critical Care Trials Group





## Effect of Hypothermia in Severe

## **Traumatic Brain Injury-Associated**

## **Intracranial Hypertension**



# ICP > 20 mmHg > 5 min





| Stage 1        |  |
|----------------|--|
| Sedation       |  |
| Ventilation    |  |
| Head Up        |  |
| NAP > 80 mm Hg |  |

| Stage 1         |  |
|-----------------|--|
| Sedation        |  |
| Ventilation     |  |
| Head Up         |  |
| MAP > 80 mm Hg  |  |
| Ventriculostomy |  |
| Surgery         |  |
|                 |  |

## **Standard Management**

or

## Hypothermia 32 - 35°C







## Stage 3

Barbiturates

Decompressive Craniectomy

**Further Surgery** 





















# Primary Outcome EGOS 1 - 4 acOR 1.53 (1.02 to 2.30) P=0.04












#### Erythropoietin in Traumatic Brain Injury

and a second second

#### **Erythropoietin**

#### Neurocytoprotective

Anti-excitotoxic

Anti-oxidant

#### Anti-inflammatory

#### Anti-oedematous







#### Safety Measures

Stopping critieria

**DVT** Screening



















#### GOS-E1-

| 46<br>(16%)       | 7<br>(2%) | 52<br>(18%)    | 27<br>(9%)  | 66<br>(22%) | 38<br>(13%) | 33<br>(11%) | 25<br>(9%) |
|-------------------|-----------|----------------|-------------|-------------|-------------|-------------|------------|
| y thropoiet in    | (n=302)   |                |             |             |             |             |            |
| 32 1<br>(11%) (49 | 1<br>6) ( | 58<br>(19%)    | 33<br>(11%) | 73<br>(24%) | 42<br>(14%) | 31<br>(10%) | 22<br>(7%) |
|                   | now Outco | o me Scale sco | re          |             |             |             |            |
| 1 2               | 3         | 4 🗖 5          | 6 🗆 7 🗖     | 8           |             |             |            |

#### **Day 180 Mortality**



Figure 3: Kaplan-Meier estimates of the unadjusted probability of death at 6 months in patients receiving erythropoietin or placebo

# Day 180 Mortality EPO 11% Placebo 16% RR 0.68, 95% CI 0.44 – 1.03; P=0.07

#### Day 180 Mortality – Diffuse TBI

EPO 9.1%

Placebo 15.2%

RR 0.60, 95% CI 0.36 – 0.99; P=0.04







### PROPPR



## Blood product ratios in traumatic haemorrhage



#### Plasma : Platelets : RBCs

#### 1:1:1 **vs** 1:1:2







#### Boxes



#### 1:1:1 1 platelets | 6 FFP | 6 RBCs







#### 1 platelets | 6 FFP | 6 RBCs

#### 3 FFP | 6 RBCs







1 platelets | 6 FFP | 6 RBCs

#### 3 FFP | 6 RBCs

#### 1 platelets | 3 FFP | 6 RBCs

#### Sequence



#### Sequence



#### 1:1:1 1 platelets 6 x (1 RBCs | 1 FFP)



#### Sequence



#### 1:1:1 1 platelets 6 x (1 RBCs | 1 FFP)



#### 3 x (2 RBCs | 1 FFP) + 1 platelets



#### End Point

#### Cessation of requirement for blood

#### Surgeon

#### Radiologist



#### Mortality



#### Mortality

#### 580 Patients

#### **0.044** ∆ **10%**

#### 21% to 11%


## Mortality 580 Patients 0.044 $\Delta 10\%$ 21% to 11% 0.044 $\Delta$ 12% 35% to 23%







| 1:1:1 | 1:1:2 | Baseline               |
|-------|-------|------------------------|
| 34.5  | 34    | Age                    |
| 78%   | 83%   | Male                   |
| 26.5  | 26    | ISS                    |
| -8    | -8.5  | Base Excess            |
| 27.5  | 25.4  | Time to<br>Recruitment |





#### Plasma : RBCs Platelets : RBCs





#### Plasma : RBCs Platelets : RBCs



|                          | 1:1:1 | VS | 1:1:2 |
|--------------------------|-------|----|-------|
| Plasma :                 | 1.0   |    | 0.5   |
| RBCs<br>Platelets : RBCs | 1.5   |    | 0.4   |



#### **Blood Products during Intervention**







#### **Blood Products after Intervention**



















|           | 1:1:1 | 1:1:2 |         |
|-----------|-------|-------|---------|
| Plasma    | 7     | 5     | P<0.001 |
| Platelets | 12    | 6     | P<0.001 |

















| Mortality | 1:1:1 | 1:1:2 |
|-----------|-------|-------|
| 24 Hours  | 12.7% | 17.0% |
| 30 Days   | 22.4% | 26.1% |



#### **Deaths from Exsanguination at 24 hours**



#### Deaths from Exsanguination at 24 hours





#### Deaths from Exsanguination at 24 hours

| 1:1:1 | 1:1:2 |
|-------|-------|
| 9.2%  | 14.6% |

difference -5.4%

95% CI, -10.4% to -0.5%

P = 0.03



## Haemostasis



#### Haemostasis





## Methodologically robust

Limitations few

**Overall** outstanding







# Paracetamol in fever from suspected infection



#### Inclusion

Fever

#### Antimicrobials



#### End Point

Cessation of fever Cessation of antimicrobials ICU Discharge Contraindication Day 28

# Confounders Rescue pyrexia management Open label paracetamol








| Age         | 59    | Baseline |
|-------------|-------|----------|
| Male        | 65%   |          |
| APACHE II   | 19    |          |
| Vasopressor | 50%   |          |
| Ventilated  | 50%   |          |
| Microbe     | 62.5% |          |
| Peak Temp   | 38.7° |          |
|             | C     |          |









#### Figure S6. Average mean daily temperature by treatment group.\*

\*Error bars are plus or minus one standard deviation. The number of patients contributing data to each study point by treatment group is shown on the horizontal axis. Day zero is the day of randomization.

| ICU-Free DaysParacetamol23IQR 13 - 25Placebo22IQR 12 - 25                                   |               |    |             |
|---------------------------------------------------------------------------------------------|---------------|----|-------------|
| Paracetamol         23         IQR 13 - 25           Placebo         22         IQR 12 - 25 | ICU-Free Days |    |             |
| Placebo         22         IQR 12 - 25                                                      | Paracetamol   | 23 | IQR 13 - 25 |
|                                                                                             | Placebo       | 22 | IQR 12 - 25 |
|                                                                                             |               |    |             |

## **ICU-Free Days**

## $\Delta$ 0 days; 96.2% CI, 0 to 1; P = 0.07







## Contamination 30%

Methodologically good Limitations several Overall good





## Effect of plasma-lyte 148 vs 0.9% saline on AKI in ICU patients

## Saline harmful

Hyperchloraemia

Metabolic acidosis



Design Investigator Initiated Multicentre

Blinded

**Cluster-Randomised** 

**Double-Crossover** 

|         |         |         | The second |  |
|---------|---------|---------|------------|--|
| ICU 1   | ICU 2   | ICU 3   | ICU 4      |  |
| Fluid A | Fluid B | Fluid A | Fluid B    |  |
| Fluid B | Fluid A | Fluid B | Fluid A    |  |
| Fluid A | Fluid B | Fluid A | Fluid B    |  |
| Fluid B | Fluid A | Fluid B | Fluid      |  |
|         |         |         |            |  |



Study fluid encouraged

**Open-label crystalloid** 

## **Clinician determined**



## **Acute Kidney Injury**

## **Power calculation**





















# Acute Kidney Injury $\Lambda$ 0.4% [95% CI, -2.1% to 2.9%] RR, 1.04 [95% CI, 0.80 to 1.36] P = 0.77 P = 0.77








## Methodologically excellent Limitations few **Overall** strong





#### High flow nasal oxygen

#### in acute hypoxaemic respiratory failure

# High flow nasal oxygen Face mask oxygen **Non-Invasive Ventilation**

#### Inclusion

#### **ICU** Patient

## Acute hypoxaemic respiratory failure



## Design Multicentre Randomised **Controlled trial**





#### Standard Oxygen

#### Nonrebreather mask

O<sub>2</sub> ≥ 10 l/min

SpO₂ ≥ 92%

#### Standard Oxygen

#### FiO₂ 1.0 O₂ 50 I/min SpO₂ ≥ 92%

Duration ≥ 2 days

HFNO

HFNO

**HFNO** 

#### Standard Oxygen

### PS aiming Vt 7 -10 ml / kg PEEP 2 -10 cm H<sub>2</sub>O FiO<sub>2</sub> adjusted SpO<sub>2</sub> $\geq$ 92%

#### Sessions $\geq$ 8 hours / day

#### **Endpoints**

Haemodynamic instability Neurological deterioration Ongoing respiratory failure















#### Standard Oxygen

#### 13±5 l/min

#### 48±11 l/min

#### FiO<sub>2</sub> 0.82±0.2

#### **Standard** Oxygen

#### 13±5 l/min

8±3 / 5±1

#### 48±11 l/min FiO<sub>2</sub> 0.82±0.2

#### Vt 9.2±3.0

FiO<sub>2</sub> 0.67±0.2

8 hours/day













#### **HFNO**

#### More comfortable

#### Better in P/F < 200




## Critical Care Reviews Meeting 2016

Titanic Centre, Belfast

